Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration
نویسندگان
چکیده
β-Catenin, a key transducer molecule of Wnt signaling, is required for adult hair follicle growth and regeneration. However, the cellular source of Wnt ligands required for Wnt/β-catenin activation during anagen induction is unknown. In this study, we genetically deleted Wntless (Wls), a gene required for Wnt ligand secretion by Wnt-producing cells, specifically in the hair follicle epithelium during telogen phase. We show that epithelial Wnt ligands are required for anagen, as loss of Wls in the follicular epithelium resulted in a profound hair cycle arrest. Both the follicular epithelium and dermal papilla showed markedly decreased Wnt/β-catenin signaling during anagen induction compared with control hair follicles. Surprisingly, hair follicle stem cells that are responsible for hair regeneration maintained expression of stem cell markers but exhibited significantly reduced proliferation. Finally, we demonstrate that epidermal Wnt ligands are critical for adult wound-induced de novo hair formation. Collectively, these data show that Wnt ligands secreted by the hair follicle epithelium are required for adult hair follicle regeneration and provide new insight into potential cellular targets for the treatment of hair disorders such as alopecia.
منابع مشابه
CCN2 modulates hair follicle cycling in mice
It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells-epithelial cells located in the follicle bulge-are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, bu...
متن کاملRe-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia
Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...
متن کاملControls of hair follicle cycling.
Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, w...
متن کاملHairless triggers reactivation of hair growth by promoting Wnt signaling.
The mammalian hair cycle involves periodic regeneration of a tiny organ, the hair follicle, through a stem-cell-mediated process. The Hairless (Hr) gene encodes a nuclear receptor corepressor (HR) that is essential for hair follicle regeneration, but its role in this process is unknown. Here, we demonstrate that transgenic expression of HR in progenitor keratinocytes rescues follicle regenerati...
متن کاملActivation of β-Catenin Signaling in CD133-Positive Dermal Papilla Cells Drives Postnatal Hair Growth
The hair follicle dermal papilla (DP) contains a unique prominin-1/CD133-positive (CD133+) cell subpopulation, which has been shown to possess hair follicle-inducing capability. By assaying for endogenous CD133 expression and performing lineage tracing using CD133-CreERT2; ZsGreen1 reporter mice, we find that CD133 is expressed in a subpopulation of DP cells during the growth phase of the murin...
متن کامل